Increased DNA methylation and decreased expression of PDX-1 in pancreatic islets from patients with type 2 diabetes.

نویسندگان

  • Beatrice T Yang
  • Tasnim A Dayeh
  • Petr A Volkov
  • Clare L Kirkpatrick
  • Siri Malmgren
  • Xingjun Jing
  • Erik Renström
  • Claes B Wollheim
  • Marloes Dekker Nitert
  • Charlotte Ling
چکیده

Mutations in pancreatic duodenal homeobox 1 (PDX-1) can cause a monogenic form of diabetes (maturity onset diabetes of the young 4) in humans, and silencing Pdx-1 in pancreatic β-cells of mice causes diabetes. However, it is not established whether epigenetic alterations of PDX-1 influence type 2 diabetes (T2D) in humans. Here we analyzed mRNA expression and DNA methylation of PDX-1 in human pancreatic islets from 55 nondiabetic donors and nine patients with T2D. We further studied epigenetic regulation of PDX-1 in clonal β-cells. PDX-1 expression was decreased in pancreatic islets from patients with T2D compared with nondiabetic donors (P = 0.0002) and correlated positively with insulin expression (rho = 0.59, P = 0.000001) and glucose-stimulated insulin secretion (rho = 0.41, P = 0.005) in the human islets. Ten CpG sites in the distal PDX-1 promoter and enhancer regions exhibited significantly increased DNA methylation in islets from patients with T2D compared with nondiabetic donors. DNA methylation of PDX-1 correlated negatively with its gene expression in the human islets (rho = -0.64, P = 0.0000029). Moreover, methylation of the human PDX-1 promoter and enhancer regions suppressed reporter gene expression in clonal β-cells (P = 0.04). Our data further indicate that hyperglycemia decreases gene expression and increases DNA methylation of PDX-1 because glycosylated hemoglobin (HbA1c) correlates negatively with mRNA expression (rho = -0.50, P = 0.0004) and positively with DNA methylation (rho = 0.54, P = 0.00024) of PDX-1 in the human islets. Furthermore, while Pdx-1 expression decreased, Pdx-1 methylation and Dnmt1 expression increased in clonal β-cells exposed to high glucose. Overall, epigenetic modifications of PDX-1 may play a role in the development of T2D, given that pancreatic islets from patients with T2D and β-cells exposed to hyperglycemia exhibited increased DNA methylation and decreased expression of PDX-1. The expression levels of PDX-1 were further associated with insulin secretion in the human islets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In Vivo Pancreatic β-Cell–Specific Expression of Antiaging Gene Klotho: A Novel Approach for Preserving β-Cells in Type 2 Diabetes

Protein expression of an antiaging gene, Klotho, was depleted in pancreatic islets in patients with type 2 diabetes mellitus (T2DM) and in db/db mice, an animal model of T2DM. The objective of this study was to investigate whether in vivo expression of Klotho would preserve pancreatic β-cell function in db/db mice. We report for the first time that β-cell-specific expression of Klotho attenuate...

متن کامل

The Effect of 12 Weeks Aerobic Training on PDX-1 and GLUT2 Gene Expression in the Pancreatic Tissue of Type 2 Diabetic Rats

Objective: The aim of this study was to investigate the effect of 12 weeks aerobic training on PDX-1 and GLUT2 gene expression in the pancreatic tissue of type 2 diabetic rats. Materials and Methods: 21 wistar male rats were placed in 3 groups (healthy, diabetic, aerobic diabetic). Diabetes was induced by peritoneum injection of nicotine amid. Training program lasted 12 weeks, five sessions pe...

متن کامل

Aging correlates with decreased beta-cell proliferative capacity and enhanced sensitivity to apoptosis: a potential role for Fas and pancreatic duodenal homeobox-1.

Type 2 diabetes is characterized by a deficit in beta-cell mass, and its incidence increases with age. Here, we analyzed beta-cell turnover in islets from 2- to 3- compared with 7- to 8-month-old rats and in human islets from 53 organ donors with ages ranging from 17 to 74 years. In cultured islets from 2- to 3-month-old rats, the age at which rats are usually investigated, increasing glucose f...

متن کامل

Epigenetic aspects of pancreatic beta cell function in type 2 diabetes

Genetic and environmental factors contribute to the pathogenesis of type 2 diabetes. Epigenetic changes link environmental exposures with potentially heritable disease mechanisms. Pancreatic beta cell failure is central in the pathogenesis of type 2 diabetes. The gold standard for elucidating the underlying mechanisms is the study of human islets of Langerhans. We performed the first comprehens...

متن کامل

Decreased expression of genes involved in oxidative phosphorylation in human pancreatic islets from patients with type 2 diabetes

OBJECTIVE Gene expression alterations, especially in target tissues of insulin, have been associated with type 2 diabetes (T2D). In this study, we examined if genes involved in oxidative phosphorylation (OXPHOS) show differential gene expression and DNA methylation in pancreatic islets from patients with T2D compared with non-diabetic donors. DESIGN AND METHODS Gene expression was analyzed in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular endocrinology

دوره 26 7  شماره 

صفحات  -

تاریخ انتشار 2012